Journal of Organometallic Chemistry, 390 (1990) 127–138 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20832

Comparison of the allylation reactions of aldehydes using allylstannanes with boron trifluoride etherate and boron trichloride

Daniele Marton, Giuseppe Tagliavini *, Michele Zordan,

Dipartimento di Chimica Inorganica, Metallorganica e Analitica, Universitá di Padova, Via Marzolo I, I-35131 Padova (Italy)

and James L. Wardell

Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE (U.K.) (Received November 24th, 1989)

Abstract

Reactions between allylstannanes, $R^2CH=CHCHR^1SnBu_3$ ($R^1 = R^2 = H$ (4); $R^1 = H$, $R^2 = Me$ (5); $R^1R^2 = (CH_2)_3$ (6)) and aldehydes, RCHO (e.g. R = Et) in the presence of $BF_3 \cdot OEt_2$ in CH_2Cl_2 at $-78^{\circ}C$ produce stereoselectively *erythro*-RCH(OH)CHR²CH=CHR¹ (with one equivalent RCHO) and 4-OH-3-R¹-5-R²-2,6-R₂-tetrahydropyrans (with an excess of RCHO). In contrast, when BCl₃ is used in place of $BF_3 \cdot OEt_2$ the reactions give mixtures of chlorinated alkenes (both homoallyl chlorides and allyl chlorides) and 4-Cl-3-R¹-5-R²-2,6-R₂-tetrahydropyurans (3; X = Cl). Thus 5, EtCHO and BCl₃ (all equimolar) provide EtCHClCH₂CH=CHMe (51%, (*E*) + (*Z*)), EtCHClCHMeCH=CH₂ (7%, *erythro* + *threo*), EtCH₂CH=CH-CHMeCl (30%, (*E*) + (*Z*)) and 3 (12%, X = Cl); with EtCHO (2.2 equivalents), 3 (X = Cl; *cis / trans* = 70/30) becomes the sole product. The product, *erythro*-EtCHClCHCH=CH(CH₂)₂CH₂ (97%) was produced from equimolar EtCHO, BCl₃ and 6; with excess EtCHO (2.2 equivalents), 9-Cl-2,4-Et₂-*cis*-3-oxabicyclo[3.3.1]non-ane (17%; *cis / trans* = 45/55) and *erythro*-EtCHClCHCH=CH(CH₂)₂CH₂ (78%) were obtained.

Introduction

The uses of organotin compounds in organic synthesis has attracted considerable attention [1-3]. Of particular interest have been allylations of aldehydes by allylstannanes [1-17]. The reactions proceed on heating [e.g. 13], under pressure [e.g.

16], or preferably under milder conditions, e.g. at -78° C, in the presence of such Lewis acids as BF₃ · OEt₂, TiCl₄, and tin(IV) halides [1-15], eq. 1.

$$R^{1}CH = CHCHR^{2}SnR_{3}^{3} + RCHO \xrightarrow{(i) \Delta, P \text{ or Lewis acid}}_{(ii) H_{2}O}$$
$$RCH(OH)CHR^{2}CH = CHR^{1} + RCH(OH)CHR^{1}CH = CHR^{2} \quad (1)$$
$$(1) \qquad (2)$$

The regio- and stereo-selectivities of the homoallylic alcohol products 1 and/or 2, can depend on such factors as whether or not a Lewis acid is present, the particular Lewis acid, and even the order of mixing of the reagents [e.g. 13, 17] if this leads to different allylation agents.

A further development of the allylation reactions has been the synthesis of halotetrahydropyrans (3; X = Cl or Br), via the incorporation of a second aldehyde molecule [18-22], eq. 2.

$$R^{1}CH = CHCHR^{2}SnR^{3} + 2RCHO \xrightarrow{Bu_{n}SnX_{4-n}(X = Cl \text{ or }Br)}_{\text{or }TiCl_{4}} \xrightarrow{R^{1}}_{R} \xrightarrow{X} R^{2}$$

$$(2)$$

$$(3; X = Br \text{ or }Cl)$$

Whereas $BF_3 \cdot OEt_2/allylstannane/RCHO$ reactions have been fairly extensively studied previously, those involving BCl_3 as the Lewis acid have not. In this paper, we report findings of a comparative study of BCl_3 - and BF_3 -mediated allylations of RCHO.

Results and discussion

Three allylstannanes were used in this study; namely 4, 5 and 6. $CH_2=CHCH_2SnBu_3$ MeCH=CHCH_2SnBu_3 $CH_2(CH_2)_2CH=CHCHSnBu_3$ (4) (5: E/Z 40/60) (6)

Differences between $BF_3 \cdot OEt_2$ and BCl_3 as co-reagents

The products of allylation of EtCHO with 4, 5 or 6 in the presence of BCl₃ or $BF_3 \cdot OE_2$, generally at -78° C in CH_2Cl_2 solution, are given in Table 1; reactions involving (i) an equimolar amount and (ii) an excess of EtCHO (relative to the allylstannane) were studied. The product yields were not optimized. As can be seen from Table 1, there are major differences in the types of products obtained from the two boron halides. These include: (i) formations of mixtures of isomeric homoallyl and allyl chlorides and 4-chlorotetrahydropyrans (3; X = Cl) in the BCl₃ reactions, in contrast to those of homoallyl alcohols (with a high *erythro*-stereoselectivity) when one equivalent of RCHO is used and of 4-hydroxytetrahydropyrans (3: X = OH) when an excess of RCHO is used in the BF₃ · OEt₂ reactions, and (ii) the readier formation of tetrahydropyran derivatives from 4 and 5 in the BCl₃ reactions (e.g. as shown by the formation of 3 (X = Cl), even when only one equivalent of EtCHO is used).

We and others have shown from spectroscopic data that BCl₃ (and BBr₃), but no $BF_3 \cdot OEt_2$, undergoes transmetallations with allylstannanes * at low temperatures (e.g. ca. -80° C) [10,23,24], eq. 3. As a consequence, the effects of BCl₃ and $BF_3 \cdot OEt_2$ on the initial allylation of the aldehyde at -78° C must be accounted for

$$BCl_3 + R^1CH = CHCHR^2Sn_3^3 \rightarrow [R^1CH = CHCHR^2]BCl_2 + R^3_3SnCl$$
(3)

differently; namely in BCl₃ reactions, transmetallations (eq. 3) provide more active allylboron species, whereas in BF₃ · OEt₂ reactions, activation arises via complexation of RCHO by BF₃ [25]. 1/1 complexes of BF₃ and RCHO have been isolated and their structures investigated [11]. An additional effect of BCl₃ is its ability to act as a chloride ion donor. Schemes 1 and 2 represent the pathways for the BCl₃and BF₃ · OEt₂-mediated reactions. The various products obtained from the BCl₃ reactions, in particular the isomeric chloroalkenes, makes a comparison of the stereoselectivities obtained in the BCl₃ and BF₃ · OEt₂ reactions difficult and of little value.

Further comments on the $BF_1 \cdot OEt_2$, mediated reactions

With $BF_3 \cdot OEt_2$ as the co-reagent, crotylstannanes, MeCH=CHCH₂SnR₃ (7) and RCHO invariably produce the *erythro*-homoallylic alcohol RCH(OH)CHMe-CH=CH₂ (8), as the major product with a very high selectivity, irrespective of whether (*E*)-7 or (*Z*)-7 is used [16]. The *erythro*-homoallylic alcohol 8 (R = Pr¹) is indeed the major product from reaction of Pr¹CHO, BF₃ · OEt₂ and 5, of differing (*E*)/(*Z*) ratios (eq. 4) (Table 2). However, the amounts and stereochemical composition of minor products, e.g. Pr¹CH(OH)CH₂CH=CHMe, are affected by the order of mixing reagents, as shown by the results from this and earlier studies [13]. These reaction mixtures were maintained initially at $-78^{\circ}C$

5 +
$$Pr^{i}CHO \xrightarrow{(i) BF_{3} \cdot OEt_{2}, -78°C, room temp.}{(ii) H_{2}O} Pr^{i}CH(OH)CHMeCH=CH_{2}$$

(8, R = Pr^{i} , erythro and threo)
+ $Pr^{i}CH(OH)CH_{2}CH=CHMe$ (4)
((E) and (Z))

then raised to ambient temperature. One explanation for these changes is that the allylation of the hindered $Pr^{i}CHO$ is not complete at $-78^{\circ}C$, at which any reaction would simply involve 5 and BF₃ · PrⁱCHO. At the higher temperatures required to bring the reaction to completion, other active allylating agents, with differing selectivities, are now present. No explanation can be found for the exclusive formation of 8 ($R = Pr^{i}$) as observed by Yamamoto et al. for the same reaction

^{*} Although transmetallation reactions do not occur between BF₃·OEt₂ and allylstannanes at -78°C, other reactions can. These include (i) redistribution of the allylstannane, e.g. Me₃SnCH₂CH=CH₂ or Me_nSn(CH₂CH=CH₂)_{4-n} (n = 0-4), (ii) geometric isomerisations, e.g. (E)/(Z)-Bu₃SnCH₂CH=CH-Me [10] and (iii) allylic transpositions, e.g. Bu₃SnCH(OEt)CH=CHMe/Bu₃SnCHMeCH=CHOEt [7]. Neither redistribution nor geometric isomerisation would effect the stereoselectivities of the allylation reactions

reactions of anyistaninar	ie, EtChV and Br3-VEL			
Allylstannanes	Boron halide	Mixing sequence	Products (yield (%))	
	Lewis acid (LA)			R ² X R ¹
			Alkenes	$\mathbf{E}_{\mathbf{f}} = \mathbf{O} = \mathbf{E}_{\mathbf{f}}$
Bu ₃ SnCH ₂ CH=CH ₂	BF ₃ ·OEt ₂ (2 equiv.)	$4 \rightarrow [LA + EtCHO (1 equiv.)]$	EtCH(OH)CH ₂ CH=CH ₂ (90)	
(4)	BF ₃ ·OEt ₂ (1 equiv.) BF ₃ ·OEt ₂ (1 equiv.)	$4 \rightarrow [LA + ElCHO (1 equiv.)]$ (LA) $\rightarrow [4 + ElCHO (2.5 equiv.)]^{b}$	ыла(Ua)Сa2(73) -	$(R^1 = R^2 = H; X = OH)$ (75)
	BCl ₃ (1 equiv.)	4 → [EtCHO (1 equiv.) + LA]	EtCHCICH ₂ CH=CH ₂ (40)	one isomer ($R^{1} = R^{2} = H; X = CI$) (13)
			$EtCH_2CH_2CH=CHCH_2CI (25)$ ((E)/(Z) 72/28)	(one isomer)
	BCl ₃ (1 equiv.)	$4 \rightarrow [EtCHO (2.2 equiv.) + LA]$		$(R^{1} = R^{2} = H; X = CI)$ (68)
Bu ₃ SnCH ₂ CH=CHMe (5: (<i>E</i>)/(Z) 40/60)	BCl ₃ (1 equiv.)	$5 \rightarrow [EtCHO (1 equiv.) + LA]$	EiCHCICH ₂ CH=CHMe (51) ^c ((<i>E</i>)/(Z) 76/24)	$(R^{1} = H, R^{2} = Mc; X = CI)$ (12)
			+ EiCH ₂ CH ₂ CH=CHCHMeCl (30) ^c	
			(E)+(L) E(CHCICHMeCH=CH ₂ (7) ^c (erythro + threo)	

Reactions of allylstannancs, EtCHO and BF₃·OEt₂ or BCl₃ in CH₂Cl₂ solutions at -78° C⁴

Table 1

$(R^{1} = H, R^{2} = Mc;$ X = C1) (50) ^d cis/trans 70/30			(R ¹ = R ² = (CH ₂) ₃ ; X = OH)) 88/12 isomeric mixture	,		(R ¹ = R ² = (CH ₂) ₃ ; X = Cl) (12) cis/trans 45/55
	EtCH(OH)CHCH=CH(CH ₂) ₂ CH ₂ (71) erythro/threo 80/20	EtCH(OH)CHCH=CH ₂ (CH ₂) ₂ CH ₂ (78) ervirko/three 71/23		ErCHCICHCH=CH(CH ₂) ₂ CH ₂ (95) ervibro	EICHCICHCH=CH(CH ₂) ₂ CH ₂ (97) ervitere	EiCHCICHCH=CH(CH ₂) ₂ CH ₂ (78) erythro
5 → [EtCHO (2.2 equiv.) + LA]	6 → [(LA + EtCHO (1 equiv.)]	EtCH0 (1 equiv.) → [(LA) + (6)]	6 → [LA + EtCHO (2.2 equiv.)]	6 → [LA + EtCHO (1 equiv.)]	EtCH0 (1 equiv.) → [LA + 6]	6 → [LA + EtCHO (2.2 equiv.)]
BCI ₃ (1 equiv.)	BF3. OEt2 (2 equiv.)	BF ₃ ·OEt ₂ (2 equiv.)	BF3-OEt2 (1 equiv.)	BCI ₃ (1 equiv.)	BCI ₃ (1 equiv.)	BCI ₃ (1 equiv.)
	Bu ₃ SnCHCH=CH(CH ₂) ₃ (6)					

O and 2 ز 2 Ξ ž ALLOWED TO 10 C; Slowiy " Reactions initially at - cyclohex-2-enol.

Scheme 1

(Table 2; entry No. 4); it may be significant that different amounts of reagents were used and that a different method of analysis (GC rather than NMR) was adopted.

The high *erythro* selectivity for homoallyl alcohols in the $BF_3 \cdot OEt_2$ mediated reaction was maintained in the reaction of EtCHO with 6; the ratio *erythro/threo-9* (X = OH) 79/21 was independent of the order of mixing the reagents.

It is of interest that only one equivalent of $BF_3 \cdot OEt_2$, relative to the allylstannane, need be used; in many of previously repeated studies, two equivalents of $BF_3 \cdot OEt_2$ were employed. In this study, yields of $EtCH(OH)CH_2CH=CH_2$ were found to be > 90% when either one or two equivalents of $BF_3 \cdot OEt_2$ were used with 4 and EtCHO.

The formation of substituted 4-hydroxytetrahydropyrans 3 (X = OH) from an excess of EtCHO (at least two equivalents) further adds to the value of these allylation reactions. Boron trifluoride-etherate reactions stand alone among those involving Lewis acids (TiCl₄, Bu_nSnX_{4-n}, and BCl₃) [19-22] in giving hydroxy-rather than halo-tetrahydropyrans. From the simple allylstannane, 4, only 1 stereo-isomer of 3 ($\mathbb{R}^1 = \mathbb{R}^2 = H$, $\mathbb{R} = \text{Et or } \mathbb{Pr}^i$, X = OH) was produced from an excess of RCHO (Et or \mathbb{Pr}^i); from 6 and EtCHO two stereoisomers of 9-OH-2,4-Et₂-cis-3-oxabicyclo[3.3.1]nonane (10; X = OH) in a ratio of 88/12, were isolated, as well as some EtCH=CMeCHO, the aldol product from EtCHO.

BCl₃-mediated reactions

From reactions of 4 or 5 with an equimolar amount of EtCHO both homoallylic and allyl chlorides 11 and 12 are obtained, as well as 3 (X = Cl). The formation of

Order of mixing	(E)/(Z)-5	Pr ⁱ CH(OH)CF	HMeCH=CH ₂	Pr ⁱ CH(OH)	CH ₂ CH=CHMe	Ref.	
reagents		erythro	threo	(Z)	(E)		
5 to [Pr ¹ CHO + BF ₃]	70/30	55	6	36	1	13 "	
Pr ⁱ CHO to [5 + BF ₃]	52/48	54	11	S	30	13 "	
5 + Pr ⁱ CHO] to BF ₃	40/60	80	18	2	1	a,b	
5 to [Pr ⁱ CHO + BF ₃]	100/0	16	6	I	١	25 °	
6 30							

Products of reactions of 5, $BF_3 \cdot Et_2O$ and Pr^iCHO in $CH_2Cl_2,$ initially at $-78\,^{\circ}C$

Table 2

5 20 mmol; Pr¹CHO 20 mmol; BF₃ 40 mmol in CH₂Cl₂ (40 ml). ^b This study. ^c 5 2 mmol; Pr¹CHO 2 mmol; BF₃ 4 mmol.

-

the state of the second state of the state of the state of

the allyl chloride 12 arises from a rearrangement, either of the homoallyl chloride 11 or of the initial boron alkoxide 13 (see Scheme 3). No allyl chlorides are formed from reactions of 6; only the *erythro*-homoallylic chloride (9, X = Cl) is produced from equimolar 6 and EtCHO. Even from 2.2 equivalents of EtCHO, 9 (X = Cl) is obtained (78% yield) along with only a small amount of 10 (X = Cl) with a *cis/trans* ratio of 45/55; this ratio compares with a 25/75 ratio for 10 (X = Cl) obtained from 6, EtCHO (excess) and BuSnCl₃ [18]. From either 4 or 5 and an excess of EtCHO (2.2 equivalents), 3 (X = Cl) is obtained as the sole product. A single stereoisomer of 3 ($\mathbb{R}^1 = \mathbb{R}^2 = \mathbb{H}$, $\mathbb{R} = \mathbb{E}t$; X = Cl) was obtained from 4, whereas from 5, two stereoisomers of 3 ($\mathbb{R}^1 = \mathbb{H}$, $\mathbb{R}^2 = \mathbb{M}e$, $\mathbb{R} = \mathbb{E}t$, X = Cl) (*cis/trans* 70/30) were produced.

Boron trichloride has been found to chlorinate EtCHO to form $bis(\alpha$ -chloroethyl) ether [26]; however the products in Scheme 2 suggest that this does not occur in the allylation reactions.

Experimental

Allylstannanes, 4 and 6 were obtained by standard methods [13,18,22]. Boron trichloride (a 1 M solution in CH₂Cl₂) and boron trifluoride etherate were the best commercial grades available and were used as received. Aldehydes were redistilled prior to use.

General reaction procedure

The reagents were mixed in a particular sequence at -78° C in CH₂Cl₂ solution (unless otherwise indicated) under N₂, the usual scale being 20 mmol based on the allylstannane in ca. 40 ml solutions. The reaction mixtures were usually held at -78° C for set times before the temperature was allowed to rise to room temperature during a specified period. After treatment with saturated aqueous NH₄Cl, the organic material was extracted with CH₂Cl₂, the extracts dried, and the organic products separated by fractional distillation. Products were identified by GLC and ¹³C NMR and IR spectroscopy and by comparison with authentic samples; mainly available from earlier studies.

Specific reactions

Reactions of EtCHO and 4

(i) With $BF_3 \cdot OEt_2$. (a) Compound 4 (20 mmol) was added to EtCHO (20 mmol) and $BF_3 \cdot OEt_2$ (40 mmol) in CH_2Cl_2 at -78 °C. Product: EtCH(OH)CH₂CH=CH₂ (90% yield): identical to an authentic sample [27].

(b) Reaction was repeated with $BF_3 \cdot OEt_2$ (20 mmol). Product: EtCH(OH)CH₂CH=CH₂ (95% yield).

(c) $BF_3 \cdot OEt_2$ (30 mmol) was added to EtCHO (105 mmol) and 4 at -15° C under N₂. The mixture was allowed to warm to room temperature. Product: 4-hydroxy-2,6-diethyltetrahydropyran 3 (X = OH, R = Et, R¹, R² = H) (3.55 g, 75% yield). IR 3430(s)(OH), 1060 (s)(C-O-C), 890(s), 615(m) cm⁻¹. ¹³C NMR δ (¹³C) 10.2(CH₃), 29.3(CH₂), 41.1(C-3, C-5), 67.9(C-4) and 77.0(C-2, C-6) [28].

(ii) With BCl₃. (a) Compound 4 (20 mmol) was added to a mixture of EtCHO (20 mmol) in CH₂Cl₂ (20 ml) and BCl₃ (20 ml of 1*M* solution in CH₂Cl₂) at -78° C under N₂. The mixture was allowed to warm to room temperature and left for 4 h. Total product, 1.8 g. Products: CH₃CH₂CHClCH₂CH=CH₂ (40%). ¹³C NMR δ (¹³C) 10.9(C-6), 32.3(C-5), 42.8(C-3), 63.9(C-4), 117.6(C-1) and 134.3(C-2) [29]. (*E*)-CH₃CH₂CH₂CH=CHCH₂Cl (18%). ¹³C NMR δ (¹³C) 13.8(C-6), 25.9(C-5), 36.4(C-4), 44.2(C-1), 124.7(C-2) and 135.4(C-3). (*Z*)-CH₃CH₂CH₂CH=CHCH₂Cl (7%). ¹³C NMR δ (¹³C) 13.8(C-6), 22.7(C-5), 34.4(C-4), 45.5(C-1), 126.8(C-2) and 135.5(C-3). 4-Chloro-2,6-diethyltetrahydropyran (3: X = Cl, R = Et, R¹ = R² = H) (13%). ¹³C NMR δ (¹³C) 9.9(CH₃), 29.2(CH₂), 42.8(C-3 and C-5), 56.1(C-4), and 78.0(C-2 and C-6) [30].

(b) Compound 4 (10 mmol) was added to a mixture of EtCHO (22 mmol) in CH_2Cl_2 (20 ml) and BCl_3 (10 ml of 1 *M* solution in CH_2Cl_2) at $-78^{\circ}C$ under N_2 . Product: 4-chloro-2,6-diethyltetrahydropyran, 1.2 g (68%) (3, X = Cl, R = Et, R¹ = R² = H) identical with above product [30].

Reaction of PrⁱCHO and 4

BF₃ · OEt₂ (30 mmol) was added to 4 (30 mmol) and PrⁱCHO (105 mmol) at -15° C under N₂. Product: 4-hydroxy-2,6-di-isopropyltetrahydropyran (3: X = OH, R = Prⁱ, R¹ = R² = H) (3.5 g, 63% yield). IR 3380(m)(OH), 1075(s)(C-O-C), 885(s) and 605(m) cm⁻¹ [19,20].

Reaction of PrⁱCHO and 5

A mixture of $Pr^{i}CHO$ and 5 (both 20 mmol) was added to $BF_{3} \cdot OEt_{2}$ (40 mmol) in $CH_{2}Cl_{2}$ at $-78^{\circ}C$ under N_{2} . The mixture was allowed to warm to 25°C. Total product 2.5 g. Products: *erythro*- $Pr^{i}CH(OH)CHMeCH=CH_{2}$ (80%); *threo*- $Pr^{i}CH(OH)CHMeCH=CH_{2}$ (18%); (Z)- $Pr^{i}CH(OH)CH_{2}CH=CHMe$ (2%), all identical with samples obtained in earlier studies [31,32].

Reaction of EtCHO and 5

(a) Compound 5 (20 mmol) was added to a solution of EtCHO (20 mmol) and BCl₃ (20 mmol; 20 ml of 1 M CH₂Cl₂ solution) at -78° C under N₂. The mixture was allowed to warm to room temperature during $1\frac{1}{2}$ h. Total product: 2.0 g. Products: (*E*)-CH₃CH₂CHClCH₂CH=CHCH₃ (38%). ¹³C NMR δ (¹³C) 10.9(C-7), 17.9(C-1), 31.0(C-6), 43.8(C-4), 64.5(C-5), 127.9(C-2) and 128(C-3) [20,32,33]. (*Z*)-

CH₃CH₂CHClCH₂CH=CHCH₃ (13%). ¹³C NMR δ (¹³C) 10.11(C-7), 13.0(C-1), 31.9(C-6), 41.7(C-4), 64.5(C-5), 124.5(C-2), and 135.7(C-3) [20,32,33]. (*E*)-CH₃CH₂CH₂CH=CHCHMeCl. ¹³C NMR δ (¹³C) 13.8(C-6), 24.7(CH₃), 25.6(C-5), 38.2(C-4), 57.5(C-1), 124.5(C-2) and 134.5(C-3). (*Z*)-CH₃CH₂CH₂CH=CHCHMeCl. ¹³C NMR δ (¹³C) 13.8(C-6), 24.7(CH₃), 25.9(C-5), 35.9(C-4), 57.5(C-1), 126.3(C-2) and 126.5(C-3). Combined yield of (*E*)- and (*Z*)-CH₃CH₂CH₂CH=CHCHMeCl (30%). 4-Chloro-2,6-diethyl-3-methyltetrahydropyran (3: X = Cl, R = Et, R¹ = H, R² = Me) (12%) (identical with sample obtained in earlier studies [19,20]), and erythro- and threo-CH₃CH₂CHClCHMeCH=CH₂ (7%).

(b) The procedure was repeated with 5 (10 mmol), BCl₃ (10 ml of 1 M CH₂Cl₂ solution) and EtCHO (22 mmol) in CH₂Cl₂ (10 ml). Product: 4-chloro-2,6-diethyl-3-methyltetrahydropyran (3: X = Cl, R = Et, R¹ = H, R² = Me) (1.0 g): cis/trans 70/30, identical with sample obtained in earlier studies [19,20].

Reaction of EtCHO and 6

(i) With $BF_3 \cdot OEt_2$. (a) Compound 6 (10 mmol) was added to EtCHO (10 mmol) and $BF_3 \cdot OEt_2$ (20 mmol) in CH_2Cl_2 (20 ml) at $-78^{\circ}C$ under N_2 . The mixture was kept at $-78^{\circ}C$ for 20 min then allowed to warm up to room temperature. Product: $CH_3CH_2CH(OH)CHCH=CHCH_2CH_2CH_2$ (9: X = OH) (1.0 g, 71%) [34,35], erythro/threo 80/20.

(b) EtCHO (10 mmol) was added to **6** (10 mmol) and $BF_3 \cdot OEt_2$ (20 mmol) in CH₂Cl₂ (20 ml) at -78° C under N₂. Product: CH₃CH₂CH(OH)CHCH=CHCH₂-CH₂CH₂CH₂ (**9**; X = OH) (1.1 g, 78%), erythro/threo 77/23 [34,35].

(c) Compound 6 (10 mmol) was added to EtCHO (22 mmol) and $BF_3 \cdot OEt_2$ (10 mmol) in CH_2Cl_2 (20 ml) at $-78^{\circ}C$ under N_2 . Products 0.9 g of isomers of 9-hydroxy-2,4-diethyl-*cis*-3-oxabicyclo[3.3.1]nonane [36]. ¹³C NMR: major isomer

(88%): $\delta(^{13}C)$ 10.6(CH₃), 20.5(CH₂), 18.8(C-7), 26.2(C-6 and C-8), 38.3(C-1 and C-5), 73.4(C-9) and 81.4(C-2 and C-4); minor isomer (12%): $\delta(^{13}C)$ 10.6(CH₃), 17.8(CH₂), 18.8(C-7), 27.0(C-6 and C-8), 37.7(C-1 and C-5), 74.5(C-9) and 82.7(C-2 and C-4), and a mixture of 0.5 g of EtCH=CMeCHO and cyclohex-2-enol, confirmed by GC, from retention times of authentic samples.

(ii) With BCl_3 . (a) Compound 6 (10 mmol) was added to EtCHO (22 mmol) in CH_2Cl_2 (20 ml) and BCl_3 (10 ml of 1 *M* solution in CH_2Cl_2) at $-78^{\circ}C$ under N₂. The mixture was allowed to warm to room temperature. Product: *erythro* $CH_3CH_2CHClCHCH=CHCH_2CH_2CH_2$ (9: X = OH) (1.25 g, 95% yield). ¹³C NMR δ (¹³C) 11.6(CH₃), 21.6(C-5), 25.1(C-6), 25.9(C-4), 28.6(CH₂), 42.2(C-1), 69.4(CHCl), 128.3(C-2) and 129.3(C-3).

(b) EtCHO (10 mmol) was added to a solution of **6** (10 mmol) in CH_2Cl_2 (10 ml) and BCl₃ (10 ml of <u>1M</u> solution in CH_2Cl_2 at -78°C under N₂. Product: erythro-CH₃CH₂CHClCHCH=CHCH₂CH₂CH₂CH₂ (**9**: X = Cl) (1.27 g, 97% yield), identical with the above sample.

(c) Compound 6 (10 mmol) was added to BCl₃ (10 ml of 1 *M* solution in CH₂Cl₂) and EtCHO (22 mmol) in CH₂Cl₂ (30 ml) at -78° C under N₂. Total products: 1.42 g. Products: erythro-CH₃CH₂CHClCHCH=CHCH₂CH₂CH₂CH₂ (9: X = Cl) (78%) and cis/trans-9-chloro-2,4-diethyl-cis-3-oxabicyclo[3.3.1]nonane (10: X = Cl) (45/55) (17%), identical with authentic samples from a previous study [18].

Acknowledgements

This work was supported by the C.N.R. (Roma) and the Ministero della Pubblica Istruzione (Roma). A NATO travel grant (to JLW/GT) is gratefully acknowledged.

References

- 1 M. Pereyre, J.-P. Quintard and A. Rahm, Tin in Organic Synthesis, Butteworths, London, 1987.
- 2 Y. Yamamoto (Ed.), Organotin Compounds in Organic Synthesis, Tetrahedron Symposia-in-Print, Number 36, Tetrahedron, 45 (1989) No. 4.
- 3 J.L. Wardell, Uses of Organotin Compounds in Organic Synthesis, in P.G. Harrison (Ed.), The Chemistry of Tin, Blackie, Glasgow, 1989, Ch. 10.
- 4 Y. Yamamoto, Accounts Chem. Res., 20 (1987) 243; Aldrichimica Acta, 30 (1987) 45.
- 5 G. Tagliavini, Reviews Silicon, Germanium, Tin and Lead Compounds, 8 (1985) 237.
- 6 C. Hull, C.V. Mortlock and E.J. Thomas, Tetrahedron, 45 (1989) 1007.
- 7 J.-P. Quintard, G. Dumartin, B. Elissondo, A. Rahm, and M. Pereyre, Tetrahedron, 45 (1989) 1017.
- 8 J.M. Coxon, S.J. van Eyk and P.J. Steel, Tetrahedron, 45 (1989) 1029
- 9 J.A. Marshall and W.Y. Gung, Tetrahedron, 45 (1989) 1043.
- 10 S.E. Denmark, E.J. Weber, T.M. Wilson and T.M. Willson, Tetrahedron, 45 (1989) 1053.
- 11 S.E. Denmark, B.R. Henke and E. Weber, J. Am. Chem. Soc., 109 (1987) 2512, and ref. therein.
- 12 Y. Yamamoto, S. Hatsuya and J.I. Yamada, J. Chem. Soc., Chem. Commun., (1987) 561.
- 13 A. Boaretto, D. Marton, G. Tagliavini and P. Ganis, J. Organomet. Chem., 321 (1987) 199.
- 14 H.T. Reetz, M. Hullman, W. Massa, S. Berger, P. Rademacher and P. Heymanns, J. Am. Chem. Soc., 106 (1986) 2405.
- 15 G.E. Kock and E.J. Enholm, J. Org. Chem., 50 (1985) 147.
- 16 Y. Yamamoto, H. Yatagai, Y. Ishihara and K. Maruyama, Tetrahedron, 40 (1984) 2239.
- 17 G.E. Keck, D.E. Abbott, E.P. Boden and E.J. Enholm, Tetrahedron Lett., 25 (1984) 3927.
- 18 D. Marton, D. Furlani and G. Tagliavini, Gazz. Chim. Ital., 117 (1987) 189.
- 19 A. Gambaro, A. Boaretto, D. Marton and G. Tagliavini, J. Organomet. Chem., 260 (1984) 255.
- 20 A. Gambaro, A. Boaretto, D. Marton and G. Tagliavini, J. Organomet. Chem., 254 (1983) 293.
- 21 A. Boaretto, D. Marton, G. Tagliavini and A. Gambaro, Inorg. Chim. Acta, 77 (1983) 1153.
- 22 A. Boaretto, D. Furlani, D. Marton, G. Tagliavini and A. Gambaro, J. Organomet. Chem., 299 (1986) 157.
- 23 P. Harston, J.L. Wardell, D. Marton, G. Tagliavini and P.J. Smith, Inorg. Chim. Acta, 162 (1989) 245.
- 24 S.E. Denmark, T. Wilson and T.M. Willson, J. Am. Chem. Soc., 110 (1988) 984.
- 25 Y. Yamamoto, H. Yatagai, Y. Naruta and K. Maruyama, J. Am. Chem. Soc., 102 (1980) 7107.
- 26 M.J. Frazer, W. Gerrard and M.F. Lappert, J. Chem. Soc., (1957) 739.
- 27 V. Peruzzo and G. Tagliavini, J. Organomet. Chem., 162 (1978) 37.
- 28 L. Gouin, O. Riobé and V. Herault, C.R. Acad. Sci. Paris Sér., 256 (1963) 4923.
- 29 C. Benamin, G. Lanchee and B. Bloun, Bull. Soc. Chim. France, (1974) 661.
- 30 A. Boaretto, D. Marton and G. Tagliavini, Inorg. Chim. Acta, 77 (1983) L153.
- 31 A. Gambaro, D. Marton, V. Peruzzo and G. Tagliavini, J. Organomet. Chem., 226 (1982) 149.
- 32 A. Boaretto, D. Marton and G. Tagliavini, J. Organomet. Chem., 321 (1987) 199.
- 33 A. Gambaro, P. Ganis, D. Marton, V. Peruzzo and G. Tagliavini, J. Organomet. Chem., 231 (1982) 307.
- 34 D. Young and W. Kitching, Aust. J. Chem., 38 (1985) 1767.
- 35 D. Furlani, D. Marton, G. Tagliavini and M. Zordan, J. Organomet. Chem., 341 (1988) 345.
- 36 A.T. Blomquist and J. Wolinksy, J. Am. Chem. Soc., 79 (1957) 6095.